师资队伍

助理研究员

电子邮箱:sun-yw@tsinghua.edu.cn

教育背景

博士 202101 清华大学 核研院

学士 201507 西安交通大学大学 核工程与核技术

工作履历

202306- 清华大学核研院501室 助理研究员

研究领域

辐射成像、图像处理、CT重建算法、深度学习技术

学术成果

[1] Fu, J., Cong, P., Xu, S., Chang, J., Liu, X., & Sun, Y*. (2025). Neural architecture search with Deep Radon Prior for sparseview CT image reconstruction. Medical Physics, 52(5), 3044-3058.

[2] Fu, J., Liu, R., Zeng, T., Cong, P., Liu, X., & Sun, Y*. (2025). A study on CT detection image generation based on decompound synthesize method. Journal of X-Ray Science and Technology, 33(1), 72-85.

[3] Zeng, T., Fu, J., Cong, P., Liu, X., Xu, G., & Sun, Y*. (2025). A reverse scatter correction method for CT images of nuclear graphite components. Nuclear Engineering and Design, 442, 114236.

[4] Zeng, T., Fu, J., Cong, P., Liu, X., Xu, G., & Sun, Y*. (2025). Research on ring artifact reduction method for CT images of nuclear graphite components. Journal of X-Ray Science and Technology, 08953996241308760.

[5] Chang, J., Xu, S., Jiang, Z., Zhang, Y., & Sun, Y*. (2025). The deep radon prior-based stationary CT image reconstruction algorithm for two phase flow inspection. Journal of X-Ray Science and Technology.

[6] Jiang, S., Xu, S., Sun, Y., & Wu, Z. (2025). Research on meshing method for industrial CT volume data based on iterative smooth signed distance surface reconstruction. Journal of X-Ray Science and Technology.

[7] Jiang, Z., Fu, J., Zeng, T., Liu, R., Cong, P., Miao, J., & Sun, Y*. (2025). Defect R-CNN: A Novel High-Precision Method for CT Image Defect Detection. Applied Sciences, 15(9), 4825.

[8] Chang, J., Tang, P., Jiang, Z., Wang, Z., Wu, Z., & Sun, Y*. (2025). Unsupervised Deblurring Algorithm Based on Deep Image Prior for Vehicle Detection Systems. IEEE Transactions on Nuclear Science.

[9] Zhang, H., Jiang, S., Sun, Y., Zhang, Z., & Xu, S. (2024). Industrial digital radiographic image denoising based on improved KBNet. Journal of X-Ray Science and Technology, 32(6), 1521-1534.

[10] Jiang, S., Sun, Y., Xu, S., Zhang, Z., & Wu, Z. (2024). Metal Artifact Correction in Industrial CT Images Based on a Dual-Domain Joint Deep Learning Framework. Applied Sciences, 14(8), 3261.

[11] Jiang, S. B., Sun, Y. W., Xu, S., Zhang, H. X., & Wu, Z. F. (2024). Semi-supervised segmentation of metal-artifact contaminated industrial CT images using improved CycleGAN. Journal of X-Ray Science and Technology, 32(2), 271-283.

[12] Zhang, H., Sun, Y., Chen, Z., & Wu, Z. (2023). Design of a Nanosecond Voltage Comparator with PECL Logic for a PhotonCounting Radiation Imaging System Application. Science and Technology of Nuclear Installations, 2023(1), 6810882.

[13] Liu, R., Sun, Y., Liu, X., & Cong, P. (2023). Enhanced data augmentation for denoising and super-resolution reconstruction of radiation images. IEEE Transactions on Nuclear Science, 70(9), 2183-2190.

[14] 冷智颖,孙跃文,童建民,.基于生成对抗网络的车辆辐射图像复原方法[J].清华大学学报(自然科学版), 2022,62(10):16911696.

[15] Zhao, Zhongwei, Yuewen Sun, and Peng Cong. "Sparse-view CT reconstruction via generative adversarial networks." 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC). IEEE, 2018.

[16] Sun, Y., Liu, X., Cong, P., Li, L., & Zhao, Z. (2018). Digital radiography image denoising using a generative adversarial network. Journal of X-ray Science and Technology, 26(4), 523-534.

[17] Sun, Yuewen, et al. "Enhancement of digital radiography image quality using a convolutional neural network." Journal of X-ray Science and Technology 25.6 (2017): 857-868.

[18] 孙跃文,李立涛,丛鹏,.基于深度学习的辐射图像超分辨率重建方法[J].原子能科学技术,2017,51(05):890-895.