教育背景
博士 202106 清华大学 流体力学
硕士 201706 中国矿业大学 固体力学
学士 201406 中国矿业大学 工程力学
工作履历
202308-至今 清华大学核研院 助理研究员
202107-202307 清华大学航院 博士后、助理研究员
学术兼职
202305-至今 中国航空学会结冰与防除冰分会 青年委员
研究领域
反应堆系统及设备热工水力,非能动自然循环系统研究
液滴动力学、界面流动与传热传质、结冰与防除冰
研究概况
2025年1月至2026年12月 连续过冷液滴高速撞击固体表面的动力学与结冰机理研究 (主持, 北京市自然科学基金青年项目)
2024年7月至2027年6月 超滑自驱表面分区调控微液滴行为及强化冷凝传热机理研究 (参与,北京市自然科学基金杰出青年项目)
2021年1月至2024年12月 过冷水滴在超疏水表面上的碰撞特性研究(参与,国家自然科学基金面上项目)
2021年10月至2023年7月 过冷水滴连续撞击固体表面的结冰特性研究(主持,中国博士后科学基金会面上项目)
奖励与荣誉
2021年 清华大学优秀博士学位论文
2023年 清华大学航院“清航学者”资助计划
学术成果
发表文章
[1] He J, He F, Zhang H*, et al. Three typical icing patterns: Competition between the drop dynamics and heat transfer [J]. Applied Thermal Engineering, 2025, 270, 12640.
[2] Zhang H, Du H, Zhu D, et al. Ice adhesion properties on micropillared superhydrophobic surfaces [J]. ACS Applied Materials & Interfaces, 2024, 16, 11084-11093.
[3] Li Y, Zhang H, Du J, et al. Coalescence-Induced Self-Propelled Particle Transport with Asymmetry Arrangement [J]. ACS Applied Materials & Interfaces, 2024, 16, 18184-18193.
[4] Wang C, Zhang H, Zhu D, et al. Successive impact of droplets on the superhydrophobic surface [J]. International Journal of Multiphase Flow, 2024, 174, 104798.
[5] Zhang H*, Zhu D, Zhao H, et al. Photothermal anti/de‑icing performances of superhydrophobic surfaces with various micropatterns[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2023, 40(2), 137-147.
[6] Wang C, Zhang H, Xu Z, et al. Whether contact time can evaluate the anti-icing properties of superhydrophobic surface - A research based on the MDPDE method[J]. International Journal of Heat and Mass Transfer, 2023, 215, 124477.
[7] Huang B, Zhang X, Li X, Zhang H, et al. Numerical investigation of droplet condensation and self-propelled jumping on superhydrophobic microcolumned surfaces. Physics of Fluids, 2023, 35, 0149152.
[8] Chen C, Tian Z, Zhu D, Zhang H, et al. Metallic hierarchical structures uniformly covered with WCPDMS composite coatings toward comprehensively durable superhydrophobic surfaces. Chemical Engineering Science, 2023, 282, 119248.
[9] Xue S, Xu Q, Xu Z, Zhang X, Zhang H, et al. Manipulation of Particle/Cell Based on Compressibility in a Divergent Microchannel by Surface Acoustic Wave [J]. Analytical Chemistry, 2023, 95, 4282-4290.
[10] Zhang H*, Zhang X, He F et al. How micropatterns affect the anti-icing performance of superhydrophobic surfaces [J]. International Journal of Heat and Mass Transfer, 2022, 195, 123196.
[11] Zhang H*, Zhang X, Yi X, et al. How surface roughness promotes or suppresses drop splash [J]. Physics of Fluids, 2022, 34, 022111.
[12] Wang Z, He F, Zhang H, et al. Three-dimensional measurement of the droplets out of focus in shadowgraphy systems via deep learning-based image-processing method, Physics of Fluids, 2022, 34, 073301.
[13] Wang Z, He F, Zhang H, et al. Characterization of the in-focus droplets in shadowgraphy systems via deep learning based image processing method, Physics of Fluids, 2022, 34, 113316.
[14] Wang C, Xu Z, Zhang H, et al. A new freezing model of sessile droplets considering ice fraction and ice distribution after recalescence, Physics of Fluids, 2022, 34, 092115.
[15] Zhang H, Zhang X, Yi X, et al. Reversed role of liquid viscosity on drop splash [J]. Physics of Fluids, 2021, 33, 052103.
[16] Zhang H, Zhang X, Yi X, et al. Effect of wettability on droplet impact: spreading and splashing [J]. Experimental Thermal and Fluid Science, 2021,110369.
[17] Zhang H*, Gao Y, Zhang X, et al. Characteristics of secondary droplets produced by the impact of drops onto a smooth surface [J]. Advances in Aerodynamics, 2021, 3, 35.
[18] Wang C, Wu X, Zhang H, et al. A many-body dissipative particle dynamics study of eccentric droplets impacting inclined fiber [J]. Physics of Fluids, 2021, 33, 042001 (Editor’s Pick).
[19] Zhang H, Zhang X, Yi X, et al. Asymmetric splash and breakup of drops impacting on cylindrical superhydrophobic surfaces [J]. Physics of Fluids, 2020, 32, 122108 (Editor’s Pick).
[20] Zhang H, Zhang X, Yi X, et al. Dynamic behaviors of droplets impacting on ultrasonically vibrating surfaces [J]. Experimental Thermal and Fluid Science, 2020, 112, 110019.
[21] Zhang H, Yi X, Du Y, et al. Dynamic behavior of water drops impacting on cylindrical superhydrophobic surfaces [J]. Physics of Fluids, 2019, 31, 032104 (Editor’s Pick).
[22] Zhang H, Peng W, Gao F, et al. A heterogeneous model for simulating fluid flow in naturally fractured-vuggy carbonate reservoirs [J]. International Journal of Oil, Gas and Coal Technology. 2019, 24, (4), 397-419.
[23] Peng W, Gao F, Zhang H, et al. A new analysis model for heterogeneous shale gas reservoirs [J]. International Journal of Oil, Gas and Coal Technology. 2019, 24, (4), 501-526.
[24] 张海翔, 何 枫, 张锡文, 等. 液滴碰撞超声振动曲面的实验研究[J]. 实验流体力学, 2020, 34(4): 1-8.
出版专著
[1] Peng Weihong, Zhang Haixiang, Xu Yong. Inhomogeneous Model and Its Application in Shale Gas Reservoirs,China University of Mining & Technology Press,2019.12.
专利
[2] 一种同时测量微量液体粘度与表面张力的装置及方法. 202210229578.9 (发明专利,已公开)
[3] 聚焦液滴识别方法、装置、电子设备及存储介质.202211576369.8 (发明专利,已公开)
[4] 一种基于超声振动的飞机机翼防冰装置及其方法, ZL201911051774.6 (发明专利,已授权)
[5] 脆性材料高低温加载下力学特性损伤变化测量系统及方法. ZL201510869200.5 (发明专利,已授权)
[6] 一种施工立井悬吊绳与稳绳张力在线检测装置及方法. ZL201410623945.9 (发明专利,已授权)
[7] 变坡度斜向运行容器自动调平装置及方法. ZL201510707541.2 (发明专利,已授权)
[8] 一种平台间的间隙搭接装置及其搭接方法. ZL201510847999.8 (发明专利,已授权)